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1. (6.1.6 of [BS11]) Let n ∈ N and let f : R → R be defined by f(x) := xn for x ≥ 0
and f(x) := 0 for x < 0. For which values of n is f ′ continuous at 0? For which
values of n is f ′ differentiable at 0?

Solution. We know that the derivative f ′ is given by

f ′(x) =

{
nxn−1, x ≥ 0

0, x < 0

We see clearly that lim
x→0−

f ′(x) = 0, so in order for f ′ to be continuous at 0, we need

lim
x→0+

f ′(x) = 0 as well. We have

lim
x→0+

f ′(x) = lim
x→0+

nxn−1 =

{
1, n = 1

0, n ≥ 2

So we conclude that f ′ is continuous at 0 for n ≥ 2.

For differentiability of f ′ at 0, we know that continuity is a necessary condition, so
we already have that n ≥ 2 at least. By definition of the derivative,

lim
x→0−

f ′(x)− f ′(0)

x
= lim

x→0−

0− 0

x
= 0,

so for differentiability of f ′ at 0, we again expect lim
x→0+

f ′(x)− f ′(0)

x
= 0 as well. We

have

lim
x→0+

f ′(x)− f ′(0)

x
= lim

x→0+

nxn−1

x
= lim

x→0+
nxn−2 =

{
1, n = 2

0, n ≥ 3

So we conclude that f ′ is differentiable at 0 for n ≥ 3. ◀

2. (6.1.9 of [BS11]) Prove that if f : R → R is an even function [that is, f(−x) = f(x)
for all x ∈ R] and has a derivative at every point, then the derivative f ′ is an odd
function [that is, f ′(−x) = −f ′(x) for all x ∈ R]. Also prove that if g : R → R is
a differentiable odd function, then g′ is an even function.

Solution. Since f is even, f(−x+ h) = f(−(x− h)) = f(x− h), and so

f ′(−x) = lim
h→0

f(−x+ h)− f(−x)

h
= lim

h→0

f(x− h)− f(x)

h

= − lim
h→0

f(x− h)− f(x)

−h
= −f ′(x)
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as required.

Likewise, since g is odd, g(−x+ h) = −g(x− h), and we have

g′(−x) = lim
h→0

g(−x+ h)− g(−x)

h
= lim

h→0

−g(x− h) + g(x)

h

= lim
h→0

g(x− h)− g(x)

−h
= g′(x)

as required. ◀

3. (6.1.15 of [BS11]) Given that the restriction of the cosine function cos to I := [0, π]
is strictly decreasing and that cos 0 = 1, cos π = −1, let J := [−1, 1], and let
Arccos : J → R be the function inverse to the restriction of cos to I. Show that
Arccos is differentiable on (−1, 1) and DArccosy = (−1)/(1− y2)1/2 for y ∈ (−1, 1).
Show that Arccos is not differentiable at −1 and 1.

Solution. By Theorem 6.1.8 of [BS11], Arccos is differentiable on (−1, 1) with
derivative at given by

DArccosy =
1

cos′ x
= − 1

sinx

where x is such that y = cos x. Given this relationship, we know that 1 = y2 +
sin2 x ⇒ sinx =

√
1− y2 and so we have that

DArccosy = − 1√
1− y2

as required.

From the formula found for DArccosy, we readily see that the right hand side is not
well-defined at y = ±1, and so Arccos is not differentiable at ±1. ◀

4. (6.2.5 of [BS11]) Let a > b > 0 and let n ∈ N satisfy n ≥ 2. Prove that a1/n− b1/n <
(a− b)1/n. [Hint : Show that f(x) := x1/n − (x− 1)1/n is decreasing for x ≥ 1, and
evaluate f at 1 and a/b.]

Solution. We first note that if a > 0, then the function g(x) = x−a is decreasing
for x ≥ 0. We can see this by observing that for x ≥ 0, g′(x) = −axa−1 ≤ 0 and so
we can conclude that g is decreasing for x ≥ 0 by Theorem 6.2.7 of [BS11].

Following the hint, we want to show that the function f(x) = x1/n − (x − 1)1/n is
decreasing for x ≥ 1. Taking derivative, we have that

f ′(x) =
1

n
x1/n−1 − 1

n
(x− 1)1/n−1.

Observe that for n ≥ 2, the exponent 1/n − 1 < 0 and so by above the function
g(x) = 1

n
x1/n−1 is decreasing for x ≥ 0. Hence, for x ≥ 1, we have that

1

n
(x− 1)1/n−1 <

1

n
x1/n−1,
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that is, that f ′(x) < 0 for x ≥ 1. Hence, evaluating at 1 and a/b > 1 (since
a > b > 0), we have that

f
(a
b

)
< f(1) =⇒

(a
b

) 1
n −

(a
b
− 1

) 1
n
< 1

1
n − (1− 1)

1
n = 1.

Multiplying by b
1
n on both sides, we obtain

a
1
n − (a− b)

1
n < b

1
n ⇐⇒ a

1
n − b

1
n < (a− b)

1
n

as required. ◀

5. (6.2.10 of [BS11]) Let g : R → R be defined by g(x) := x + 2x2 sin(1/x) for x ̸= 0
and g(0) := 0. Show that g′(0) = 1, but in every neighborhood of 0 the derivative
g′(x) takes on both positive and negative values. Thus g is not monotonic in any
neighborhood of 0.

Solution. The function g is given by

g(x) =

{
x+ 2x2 sin

(
1
x

)
, x ̸= 0

0, x = 0

By definition, we find that

g′(0) = lim
x→0

g(x)− g(0)

x
= lim

x→0

g(x)

x
= lim

x→0

x+ 2x2 sin
(
1
x

)
x

= lim
x→0

1+ 2x sin

(
1

x

)
= 1

using the inequality | sinx| ≤ 1 for all x ∈ R.
For x ̸= 0, by the Chain rule and properties of the derivative (Theorem 6.1.3 of
[BS11]), we find that

g′(x) = 1 + 4x sin

(
1

x

)
− 2 cos

(
1

x

)
.

We find two sequences (xn), (yn) such that xn, yn → 0 as n → +∞ such that
g′(xn) < 0 and g′(yn) > 0 for all n ∈ N. Let

xn :=
1

2nπ
, yn :=

2

(4n+ 1)π
,

then we see that both xn, yn → 0 as n → +∞ and we have that

g′(xn) = 1 + 4

(
1

2nπ

)
sin (2nπ)− 2 cos (2nπ) = 1− 2 = −1 < 0

while

g′(yn) = 1 + 4

(
2

(4n+ 1)π

)
sin

(
(4n+ 1)π

2

)
− 2 cos

(
(4n+ 1)π

2

)
= 1 +

8

(4n+ 1)π
> 0

for all n ∈ N as required. ◀
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6. (6.2.13 of [BS11]) Let I be an interval and let f : I → R be differentiable on I.
Show that if f ′ is positive on I, then f is strictly increasing on I.

Solution. Let x1 < x2 ∈ I. Then by the Mean Value Theorem, we have that there
is a c ∈ (x1, x2) such that

f(x2)− f(x1) = f ′(c)(x2 − x1).

Since x2 − x1 > 0 and f ′(c) > 0, we then see that

f(x2)− f(x1) > 0 ⇐⇒ f(x1) < f(x2)

as required. ◀
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