THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II Homework 1 Suggested Solutions

1. (6.1.6 of [BS11]) Let $n \in \mathbb{N}$ and let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) := x^n$ for $x \ge 0$ and f(x) := 0 for x < 0. For which values of n is f' continuous at 0? For which values of n is f' differentiable at 0?

Solution. We know that the derivative f' is given by

$$f'(x) = \begin{cases} nx^{n-1}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

We see clearly that $\lim_{x\to 0^-} f'(x) = 0$, so in order for f' to be continuous at 0, we need $\lim_{x\to 0^+} f'(x) = 0$ as well. We have

$$\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} nx^{n-1} = \begin{cases} 1, & n = 1\\ 0, & n \ge 2 \end{cases}$$

So we conclude that f' is continuous at 0 for $n \ge 2$.

For differentiability of f' at 0, we know that continuity is a necessary condition, so we already have that $n \ge 2$ at least. By definition of the derivative,

$$\lim_{x \to 0^{-}} \frac{f'(x) - f'(0)}{x} = \lim_{x \to 0^{-}} \frac{0 - 0}{x} = 0,$$

so for differentiability of f' at 0, we again expect $\lim_{x\to 0^+} \frac{f'(x) - f'(0)}{x} = 0$ as well. We have

$$\lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x} = \lim_{x \to 0^+} \frac{nx^{n-1}}{x} = \lim_{x \to 0^+} nx^{n-2} = \begin{cases} 1, & n = 2\\ 0, & n \ge 3 \end{cases}$$

So we conclude that f' is differentiable at 0 for $n \ge 3$.

2. (6.1.9 of [BS11]) Prove that if $f : \mathbb{R} \to \mathbb{R}$ is an **even function** [that is, f(-x) = f(x) for all $x \in \mathbb{R}$] and has a derivative at every point, then the derivative f' is an **odd** function [that is, f'(-x) = -f'(x) for all $x \in \mathbb{R}$]. Also prove that if $g : \mathbb{R} \to \mathbb{R}$ is a differentiable odd function, then g' is an even function.

Solution. Since f is even, f(-x+h) = f(-(x-h)) = f(x-h), and so

$$f'(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h} = \lim_{h \to 0} \frac{f(x-h) - f(x)}{h}$$
$$= -\lim_{h \to 0} \frac{f(x-h) - f(x)}{-h} = -f'(x)$$

as required.

Likewise, since g is odd, g(-x+h) = -g(x-h), and we have

$$g'(-x) = \lim_{h \to 0} \frac{g(-x+h) - g(-x)}{h} = \lim_{h \to 0} \frac{-g(x-h) + g(x)}{h}$$
$$= \lim_{h \to 0} \frac{g(x-h) - g(x)}{-h} = g'(x)$$

as required.

3. (6.1.15 of [BS11]) Given that the restriction of the cosine function cos to $I := [0, \pi]$ is strictly decreasing and that $\cos 0 = 1$, $\cos \pi = -1$, let J := [-1, 1], and let Arccos : $J \to \mathbb{R}$ be the function inverse to the restriction of cos to I. Show that Arccos is differentiable on (-1, 1) and $D\operatorname{Arccos} y = (-1)/(1-y^2)^{1/2}$ for $y \in (-1, 1)$. Show that Arccos is not differentiable at -1 and 1.

Solution. By Theorem 6.1.8 of [BS11], Arccos is differentiable on (-1, 1) with derivative at given by

$$D\operatorname{Arccos} y = \frac{1}{\cos' x} = -\frac{1}{\sin x}$$

where x is such that $y = \cos x$. Given this relationship, we know that $1 = y^2 + \sin^2 x \Rightarrow \sin x = \sqrt{1 - y^2}$ and so we have that

$$D\operatorname{Arccos} y = -\frac{1}{\sqrt{1-y^2}}$$

as required.

From the formula found for DArccosy, we readily see that the right hand side is not well-defined at $y = \pm 1$, and so Arccos is not differentiable at ± 1 .

4. (6.2.5 of [BS11]) Let a > b > 0 and let $n \in \mathbb{N}$ satisfy $n \ge 2$. Prove that $a^{1/n} - b^{1/n} < (a - b)^{1/n}$. [*Hint*: Show that $f(x) := x^{1/n} - (x - 1)^{1/n}$ is decreasing for $x \ge 1$, and evaluate f at 1 and a/b.]

Solution. We first note that if a > 0, then the function $g(x) = x^{-a}$ is decreasing for $x \ge 0$. We can see this by observing that for $x \ge 0$, $g'(x) = -ax^{a-1} \le 0$ and so we can conclude that g is decreasing for $x \ge 0$ by Theorem 6.2.7 of [BS11].

Following the hint, we want to show that the function $f(x) = x^{1/n} - (x-1)^{1/n}$ is decreasing for $x \ge 1$. Taking derivative, we have that

$$f'(x) = \frac{1}{n}x^{1/n-1} - \frac{1}{n}(x-1)^{1/n-1}$$

Observe that for $n \ge 2$, the exponent 1/n - 1 < 0 and so by above the function $g(x) = \frac{1}{n}x^{1/n-1}$ is decreasing for $x \ge 0$. Hence, for $x \ge 1$, we have that

$$\frac{1}{n}(x-1)^{1/n-1} < \frac{1}{n}x^{1/n-1},$$

that is, that f'(x) < 0 for $x \ge 1$. Hence, evaluating at 1 and a/b > 1 (since a > b > 0), we have that

$$f\left(\frac{a}{b}\right) < f(1) \Longrightarrow \left(\frac{a}{b}\right)^{\frac{1}{n}} - \left(\frac{a}{b} - 1\right)^{\frac{1}{n}} < 1^{\frac{1}{n}} - (1-1)^{\frac{1}{n}} = 1.$$

Multiplying by $b^{\frac{1}{n}}$ on both sides, we obtain

$$a^{\frac{1}{n}} - (a-b)^{\frac{1}{n}} < b^{\frac{1}{n}} \iff a^{\frac{1}{n}} - b^{\frac{1}{n}} < (a-b)^{\frac{1}{n}}$$

as required.

5. (6.2.10 of [BS11]) Let $g : \mathbb{R} \to \mathbb{R}$ be defined by $g(x) := x + 2x^2 \sin(1/x)$ for $x \neq 0$ and g(0) := 0. Show that g'(0) = 1, but in every neighborhood of 0 the derivative g'(x) takes on both positive and negative values. Thus g is not monotonic in any neighborhood of 0.

Solution. The function g is given by

$$g(x) = \begin{cases} x + 2x^2 \sin\left(\frac{1}{x}\right), & x \neq 0\\ 0, & x = 0 \end{cases}$$

By definition, we find that

$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x} = \lim_{x \to 0} \frac{g(x)}{x} = \lim_{x \to 0} \frac{x + 2x^2 \sin\left(\frac{1}{x}\right)}{x} = \lim_{x \to 0} 1 + 2x \sin\left(\frac{1}{x}\right) = 1$$

using the inequality $|\sin x| \leq 1$ for all $x \in \mathbb{R}$.

For $x \neq 0$, by the Chain rule and properties of the derivative (Theorem 6.1.3 of [BS11]), we find that

$$g'(x) = 1 + 4x \sin\left(\frac{1}{x}\right) - 2\cos\left(\frac{1}{x}\right).$$

We find two sequences (x_n) , (y_n) such that $x_n, y_n \to 0$ as $n \to +\infty$ such that $g'(x_n) < 0$ and $g'(y_n) > 0$ for all $n \in \mathbb{N}$. Let

$$x_n := \frac{1}{2n\pi}, \quad y_n := \frac{2}{(4n+1)\pi},$$

then we see that both $x_n, y_n \to 0$ as $n \to +\infty$ and we have that

$$g'(x_n) = 1 + 4\left(\frac{1}{2n\pi}\right)\sin(2n\pi) - 2\cos(2n\pi) = 1 - 2 = -1 < 0$$

while

$$g'(y_n) = 1 + 4\left(\frac{2}{(4n+1)\pi}\right)\sin\left(\frac{(4n+1)\pi}{2}\right) - 2\cos\left(\frac{(4n+1)\pi}{2}\right)$$
$$= 1 + \frac{8}{(4n+1)\pi} > 0$$

for all $n \in \mathbb{N}$ as required.

6. (6.2.13 of [BS11]) Let I be an interval and let $f : I \to \mathbb{R}$ be differentiable on I. Show that if f' is positive on I, then f is strictly increasing on I.

Solution. Let $x_1 < x_2 \in I$. Then by the Mean Value Theorem, we have that there is a $c \in (x_1, x_2)$ such that

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1).$$

Since $x_2 - x_1 > 0$ and f'(c) > 0, we then see that

$$f(x_2) - f(x_1) > 0 \iff f(x_1) < f(x_2)$$

as required.

References

[BS11] Robert G. Bartle and Donald R. Sherbert. *Introduction to Real Analysis, Fourth Edition*. Fourth. University of Illinois, Urbana-Champaign: John Wiley & Sons, Inc., 2011. ISBN: 978-0-471-43331-6.